Tunneling estimates and approximate controllability for hypoelliptic equations
نویسندگان
چکیده
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator L \mathcal {L} on compact manifold M"> mathvariant="script">M {M} assuming: alttext="left-parenthesis i right-parenthesis"> ( i stretchy="false">) encoding="application/x-tex">(i) the Chow-Rashevski-Hörmander condition ensuring hypoellipticity , and encoding="application/x-tex">(ii) analyticity coefficients . The first result tunneling estimate alttext="double-vertical-bar phi double-vertical-bar Subscript L squared left-parenthesis omega right-parenthesis Baseline greater-than-or-equal-to C e Superscript minus c lamda Super StartFraction k Over 2 EndFraction"> fence="false" stretchy="false">‖ φ L 2 ω<!-- ω </mml:msub> ≥<!-- ≥ <mml:mi>C e −<!-- − <mml:mi>c λ<!-- λ <mml:mfrac> k encoding="application/x-tex">\|\varphi \|_{L^2(\omega )} \geq Ce^{- c\lambda ^{\frac {k}{2}}} normalized eigenfunctions alttext="phi"> encoding="application/x-tex">\varphi from nonempty open set alttext="omega subset-of script ⊂<!-- ⊂ encoding="application/x-tex">\omega \subset \mathcal where alttext="k"> encoding="application/x-tex">k index alttext="lamda"> encoding="application/x-tex">\lambda eigenvalue. main stability solutions to hypoelliptic wave equation partial-differential t plus u equals 0"> mathvariant="normal">∂<!-- ∂ <mml:mi>t + u = 0 encoding="application/x-tex">(\partial _t^2+\mathcal {L})u=0 : alttext="upper T greater-than sup Underscript x element-of M Endscripts d s comma T > movablelimits="true" form="prefix">sup x ∈<!-- ∈ </mml:munder> d s , encoding="application/x-tex">T>2 \sup _{x \in {M}}(dist(x,\omega )) (here, alttext="d t"> encoding="application/x-tex">dist sub-Riemannian distance), observation solution 0 times omega"> ×<!-- × encoding="application/x-tex">(0,T)\times \omega determines data. constant involved in normal Lamda k"> mathvariant="normal">Λ<!-- Λ encoding="application/x-tex">Ce^{c\Lambda ^k} alttext="normal Lamda"> encoding="application/x-tex">\Lambda typical frequency We then prove approximate controllability heat v double-struck 1 f"> v 1 f _t+\mathcal {L})v=\mathbb {1}_\omega f any time, appropriate (exponential) cost, depending In case alttext="k 2"> encoding="application/x-tex">k=2 (Grushin, Heisenberg...), we further show trajectories polynomial cost large time. also explain how assumption can be relaxed, boundary alttext="partial-differential encoding="application/x-tex">\partial added some situations. Most results turn out optimal family Grushin-type operators. proof relies general strategy produce estimates, developed by authors Laurent-Léautaud (2019).
منابع مشابه
Sharp Hypoelliptic Estimates for Some Kinetic Equations
We provide a simple overview of some hypoellipticity results with sharp indices for a class of kinetic equations and we outline a general strategy based on some geometrical properties.
متن کاملUniform Schauder Estimates for Regularized Hypoelliptic Equations
In this paper we are concerned with a family of elliptic operators represented as sum of square vector fields: L = ∑m i=1X 2 i + ∆ in Rn, where ∆ is the Laplace operator, m < n, and the limit operator L = ∑m i=1X 2 i is hypoelliptic. Here we establish Schauder’s estimates, uniform with respect to the parameter , of solution of the approximated equation L u = f , using a modification of the lift...
متن کاملApproximate Controllability of Fractional Integrodifferential Evolution Equations
This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results ...
متن کاملApproximate Controllability for Systems Governed by Nonlinear Volterra Type Equations
We study the control systems governed by abstract Volterra equations without uniqueness in a Banach space. By using the technique of the theory of condensing maps and multivalued analysis tools, we obtain the existence result, investigate the topological structure of the solution set, and prove the invariance of a reachability set of the control system under nonlinear perturbations. Examples co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the American Mathematical Society
سال: 2022
ISSN: ['1947-6221', '0065-9266']
DOI: https://doi.org/10.1090/memo/1357